Top Q0 Electric Cables Manufacturers in India > 커뮤니티 카카오소프트 홈페이지 방문을 환영합니다.

본문 바로가기

커뮤니티

커뮤니티 HOME


Top Q0 Electric Cables Manufacturers in India

페이지 정보

작성자 Verona 댓글 0건 조회 4회 작성일 24-08-25 14:28

본문

The resistor on diode side should be selected to limit the current through the diode to a reasonable value, so that it has an opportunity to develop a voltage across its terminals in the first place, but so that it does not waste too much power. Because of the need to limit current, what are electric cables the NPN arrangement shown in column B is universally a bad idea: it will likely destroy the transistor; its PNP equivalent is equally disastrous. While very useful for controlling high-impedance signals, the diode simply serves as a "crowbar" across the supply terminals - and therefore, for input voltage sources that can source a significant current, this arrangement gets dangerously inefficient; a resistor can be used to limit supply current, of course - but this simply takes you back to the high-impedance scenario - not very useful for, say, driving motors. You can use this arrangement to adjust the speed of a motor with a small potentiometer, or perform other non-critical tasks of this nature; but for anything that requires precision and repeatability, this is just poor engineering: people should be able to substitute transistors used in your circuit with comparable alternatives, or use a 5% accuracy input resistor, and still have it work.



The drawback of the transistor switches shown earlier is that they work in a manner similar to a single-pole switch: they can connect the load to the ground (NPN, n-channel MOSFET) or to the supply rail (PNP, p-channel MOSFET), or simply leave it in open circuit state. Alas, when Vin later drops to 2V, Vout will stay at 5.4V - and because emitter voltage is now higher than base voltage, the transistor will not conduct. When Vin2 is higher than Vin1, the right transistor will insist on getting the emitter voltage to a point where the left one no longer conducts - and so, the current flowing through the right R1 (and the associated voltage drop) will increase. It does, however, need bipolar switching: if you simply apply a positive voltage to the gate, and then disconnect it - the gate-source "capacitor" will stay charged, and the transistor will continue conducting for a longer while (dependent on humidity, handling, etc); even after this charge disappears, a new one can be easily accumulated due to further handling, parasitic coupling, and so forth.



The second circuit - a bridge or full-wave rectifier - is a bit more clever, but also easy to follow: opposing pairs of diodes are used to select the more positive or negative out of two input leads, and always produce a particular output polarity. The behavior of the first circuit - known as a half-wave rectifier - should be fairly clear: the diode conducts, and therefore creates a voltage across the resistor (a dummy load), only if the first input is more positive than the other; in this circuit, diode breakdown voltage is selected high enough not to interfere with this process. The tendency for diodes to maintain a precise voltage drop across their terminals is often exploited to provide precise voltage references in a circuit. The most unsophisticated use of a diode is a shunt; shunts may be placed across the terminals of high-impedance, low-precision signal sources to trim the voltage to a particular level; or to suppress transient voltage spikes caused by inductors, electrostatic discharge, or even lightning strikes (using a specialized varistor diode). These effects are often undesirable, in the first case amounting to unwanted transmission of energy which may adversely affect nearby equipment or other parts of the same piece of equipment; and in the second case, unwanted pickup of noise which may mask the desired signal being carried by the cable, or, if the cable is carrying power supply or control voltages, pollute them to such an extent as to cause equipment malfunction.



The first problem is that your HDTV is probably not on the roof, thus you can’t see the signal readout. For starters, there is a voltage offset present between the input and the output; for inputs between 0 and 0.6V, the output will be simply clipped at 0V. Connecting the emitter to a negative voltage at least 0.6V higher than the lowest signal voltage is a potential solution to the clipping problem - but it may be impractical in some settings. This ensures that both transistors are operating in common emitter / common source mode, suitable for switching. Column C shows another arrangement that is not universally problematic, but should be avoided in switching where possible - and is all-too-common in hobbyist work: loading the emitter (BJT) or drain (MOSFET) - a configuration known as "common collector" or "common source". Diodes are also commonly used to build constant-current sources, such as this circuit: this arrangement will admit only as much current as needed to create a particular voltage across the constant "sense" resistor, R2, regardless of the potentially variable voltage drop seen across the connected load. There are uses where this arrangement makes sense - but switching is not one of them.


댓글목록

등록된 댓글이 없습니다.